48 research outputs found

    Potential for stratiform base-metal sulphides in SW England

    Get PDF
    The British Geological Survey (BGS) has recently re-evaluated the potential for stratiform base-metal sulphide mineralisation in Devon and east Cornwall (Rollin et al., 2001) (Figure 1). On the basis of their stratigraphy and tectonic setting the Lower Carboniferous strata between, and to the north of, Bodmin Moor and Dartmoor are favourable targets for Iberian Pyrite Belt (IPB)-type deposits (Figure 2). Similarly, the geological setting of the Middle to Upper Devonian sediments of Exmoor, north Devon, are comparable with those of the Harz basin in Germany which hosts the major polymetallic Sedex deposits at Rammelsburg and Meggen

    African mineral production 1999-2003 : a product of the World Mineral Statistics database

    Get PDF
    The statistics in this publication are from a more comprehensive database that is published as World Mineral Production 1999- 2003. Coverage African Mineral Production covers the majority of economically important mineral commodities. For each commodity constant efforts are made to ensure that as many producing countries as possible are reported. For some commodities, where statistics on production are not publicly available, estimates are made. Users of this compilation are advised that more statistical information than can be included in a publication of this nature is held in the BGS files and is available for consultation. Production Metals Mine production of many metals is expressed in terms of metal content. This is clearly indicated adjacent to the commodity description. Unless otherwise specified, metal production statistics relate to metal recovered from both domestic or imported materials, whether primary or secondary, but exclude remelted material

    Mineral resource information in support of national, regional and local planning : Gloucestershire (comprising Gloucestershire and South Gloucestershire)

    Get PDF
    This report is one of a series prepared by the British Geological Survey for various administrative areas in England for the Office of the Deputy Prime Minister’s research project Mineral Resource Information in Support of National, Regional and Local Planning. The accompanying map relates to the county of Gloucestershire, comprising Gloucestershire and South Gloucestershire, and delineates the mineral resources of current, or potential, economic interest in the area and the sites where minerals are or have been worked. It also relates these to national planning designations, which may represent constraints on the extraction of minerals. Three major elements of information are presented: • the geological distribution and importance of mineral resources; • the extent of mineral planning permissions and the location of current mineral workings; and • the extent of selected, nationally-designated planning constraints. This wide range of information, much of which is scattered and not always available in a consistent and convenient form, is presented on a digitally-generated summary map on the scale of 1:100 000. This scale is convenient for the overall display of the data and allows for a legible topographic base on which to depict the information. However, all the data are held digitally at larger scales using a Geographical Information System (GIS), which allows easy revision, updating and customisation of the information together with its possible integration with other datasets. The information will form part of a Summary of the Mineral Resources of the South West Region. The purpose of the work is to assist all interested parties involved in the preparation and review of development plans, both in relation to the extraction of minerals and the protection of mineral resources from sterilisation. It provides a knowledge base, in a consistent format, on the nature and extent of mineral resources and the environmental constraints, which may affect their extraction. An important objective is to provide baseline data for the long term. The results may also provide a starting point for discussions on specific planning proposals for mineral extraction or on proposals, which may sterilise resources. It is anticipated that the maps and report will also provide valuable background data for a much wider audience, including the different sectors of the minerals industry, other agencies and authorities (e.g. The Planning Inspectorate Agency, the Environment Agency, the Countryside Agency and English Nature), environmental interests and the general public. Basic mineral resource information is essential to support mineral exploration and development activities, for resource management and land-use planning, and to establish baseline data for environmental impact studies and environmental guidelines. It also enables a more sustainable pattern and standard of development to be achieved by valuing mineral resources as national assets. The mineral resources covered are sand and gravel, bedrock sand, crushed rock aggregate, building stone, hydrocarbons, and coal

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Use of 3D visualisation techniques to identify minimal impact sand and gravel extraction sites

    Get PDF
    The use of sand and gravel as building materials has increased over recent years and this trend is set to continue with the demand for more housing across Britain, especially in the southeast region. This is placing greater strain on existing sand and gravel operations and is leading to pressure to locate new resources when existing quarries become depleted or can no longer cope with demand. At the same time, knowledge of the location, thickness, and quality of sand and gravel deposits is crucial in determining future sites for extraction and it is important for planning authorities to follow the principal of sustainable development by not allowing resources to be sterilised by urbanisation. Existing geological mapping of superficial deposits does not give an accurate representation of subsurface resources and sand and gravel quarrying in the UK is sometimes carried out without the benefit of a clear three dimensional (3D) picture of the local geology. In recent years the emergence of more powerful computers has enabled sub-surface geology to be visualised in 3D so that exploration and extraction can be planned more efficiently and 3D geological maps are becoming increasingly important tools for planners and aggregate companies. During the 1970s and 1980s a large number of boreholes were drilled by BGS’s Industrial Mineral Assessment Unit (IMAU) to assess the sand and gravel potential across the country. We have used this data and a new software tool - Geological Surveying and Investigation in 3D (GSI3D) to produce a solid 3D model of the subsurface geology of selected areas. The modelling involves the construction of a grid of closely spaced cross-sections from which the model is computed by triangulation. The resource potential of the various stratigraphic units identified has also been attributed in the model and where present detailed grading information from the IMAU surveys has been included in the visualisation. The GSI3D approach is demonstrated from areas of Southern East Anglia where IMAU surveys were undertaken and important aggregate resources occur. It is hoped to extend this coverage further in the near future. The models produced allow the visualisation of subsurface mineral resources and these can be manipulated and viewed according to the users requirements. The models can, for example, be exported for analysis in GIS enabling the calculation of aggregate thicknesses, volumes, and ratios of waste-overburden-aggregate to determine cut-off points. It is hoped such models will prove a useful tool for exploration and site selection for the aggregate industry

    Platinum

    Get PDF

    Computation of stresses and displacements

    No full text
    corecore